Schlagwort-Archive: Drahtführung

Projekt: Drahtführung für Wickelautomat (Teil 10)

Ich habe das Projekt im amerikanischen Forum „Soliforum“ vorgestellt. Der entsprechende Thread ist hier zu finden. Ich kann das Forum jedem empfehlen, der sich mit dem Thema 3d-Druck und Filamentherstellung auseinandersetzen will. Das Forum ist allerdings englischsprachig.

Dort wurde schon die Frage gestellt, ob ich die STL-Dateien für die Teile meiner Drahtführung veröffentlichen werde. Ja, das werde ich tun. Leider habe ich aber beim Entwurf ein paar gravierende Fehler gemacht, die zu massiver Nacharbeit nach dem Druck führen. So kann ich das niemandem anbieten. Ich werde die Teile überarbeiten und dann hier veröffentlichen. Gebt mir ein paar Tage.

Für die Problematik der zu lockeren Wicklung hat mir der Entwickler des Filawinders einen Tip gegeben. Wahrscheinlich werde ich direkt in der Drahtführung ein weiteres PTFE-Röhrchen integrieren, dessen Querschnitt über eine Schraube verengt werden kann.  Das sollte funktionieren. Aktuell kann ich nichts umbauen, da der Extruder und der Winder rund um die Uhr laufen. Ich glaube fast, dass bald ein zweites Set nötig wird. Die Produktion ist leider ziemlich langsam. Etwa 8cm vom 3mm Draht werden pro Minute ausgeworfen. Bis da 2Kg zusammen sind, dauert es ein paar Tage.

Projekt: Drahtführung für Wickelautomat (Teil 9)

Zum vorläufigen Ende dieses Projektes will ich noch ein paar Bilder der fertigen „Maschine“ zeigen.

Drahtführung Zwischenplatine am Flawinder

Die Zwischenplatine habe ich genau gegenüber der Filawinderplatine montiert. Dafür muss natürlich die vorhandene Befestigung geändert werden.

Drahtführung Zwischenplatine verkabelt

Nahaufnahme der Verdrahtung. Ich empfehle sowohl die Leitungen als auch die Platine zu beschriften. Verwechslungen werden hier kaum verziehen.

Drahtführung seitlich

Filawinder mit Drahführung komplett von oben

gewickeltes Filament um 7Uhr

So sah die Wicklung morgens um 7Uhr aus. Gegen 22Uhr am Abend hatte ich angefangen.

gewickeltes Filament um 20Uhr

So sieht es am gleichen Tag um 20Uhr aus. Die Verteilung ist schon recht gleichmäßig, aber die Wicklung ist noch nicht straff genug. Der PTFE-Kanal hat für diesen Aufbau anscheinen nicht genug Reibung. Da muss ich mir noch etwas einfallen lassen.

Filawinder mit Drahführung komplett aus Zuführungsrichtung

Projekt: Drahtführung für Wickelautomat (Teil 8)

Hier nun der Schaltplan der kleinen Zwischenplatine mit dem Treiberbaustein von Pololu. Es ist völlig egal, ob ein A4988 oder ein DRV8825 verwendet wird. Die Beiden sind in Bezug auf diese Schaltung pinkompatibel.

Die Anschlüsse auf der linken Seite verweisen auf die entsprechenden Anschlüsse auf der Filawinderplatine.

Zwischenplatine Drahtführung

Zur besseren Orientierung hierzu noch eine Abbildung der Filawinderplatine.

Platine Oberseite gedreht

Beim Anschließen des Steppermotor ist natürlich die Referenzspannung auf dem Treiber richtig einzustellen. Das habe ich an anderer Stelle im Blog beschrieben.

Weil es hier passt, nochmal der Hinweis, wie die Endstopps (schließende Mikroschalter) angeschlossen werden:

Endstop li 1    an H1  „Guide Max +“ D8
Endstop li 2    an H1  „Guide Max -“ GND
Endstop re 1    an H1  „Guide Min +“ D3
Endstop re 2    an H1  „Guide Min -“ GND

Selbstverständlich werden die beiden Taster für die Servo-Endpositionierung nicht mehr angeschlossen. Eine manuelle Positionierung gibt es hier nicht. Wohl aber kann der Nutzer in der Firmware einstellen, ob die Anfangsposition der Führung auf der linken oder rechten Seite der Spule liegen soll. Zum Start des Gerätes bewegt sich dann die Führung dorthin und wartet auf die erste Spulenumdrehung.

Übrigens bin ich bei meiner Suche nach einen Programm zur Erstellung von elektronischen Schaltplänen auf TinyCad aufmerksam geworden. Mal abgesehen vom Bild des Treiberbausteins ist der Rest des obrigen Bildes damit erstellt. Scheint nicht schlecht zu sein und ist vor allem immer kostenlos.

… und zum Abschluss der aktuelle Stand der Firmware:

FilaWinder_t_v1

Die Firmware basiert auf der originalen Firmware für den Filawinder. Die Hinweise sind im Programm auch deutlich sichtbar. Zudem sind alle weiteren Anteile aus der originalen Firmware notwendig um ein funktionsfähiges System zu bekommen. Diese Anteile lassen sich über die Filastruder-Seite im Netz finden.

Besten Dank auch an den Programmierer der Filawinder Firmware Ian Johnson, der mir erlaubt hat auf diese Firmware aufzubauen.

Ich kann leider erst gegen Mitte Dezember weiter auf dieses Projekt eingehen. Dann werde ich die Firmware im einzelnen besprechen. Ich habe mich aber bemüht möglichst gut zu kommentieren, sodaß ein Nachbau jetzt möglich sein sollte.

Projekt: Drahtführung für Wickelautomat (Teil 7)

Es ist etwas Zeit vergangen und ich konnte leider nicht so schnell weitermachen, wie beabsichtigt. Aber: Die Drahtführung funktioniert mittlerweile. Ich will jetzt hier nach und nach aufzeichnen, wie der Aufbau aussieht.

Als kleiner Appetitanreger ist hier die Zwischenplatine mit dem Pololu-Treiberbaustein zu sehen. Die Platine wird mit der Hauptplatine des Filawinders mit 5 Kontakten verbunden:

RAW (12V)     an H1  „FAN+“
VCC (5V)    an H6  „5V“
GND         an H1  „FAN-“

DIR        an H1  „Servo S“ D06
STEP        an H8  „D10“

Zudem müssen natürlich die Endpositionen der Drahtführung überwacht werden:
Endstop li 1    an H1  „Guide Max +“ D8
Endstop li 2    an H1  „Guide Max -“ GND
Endstop re 1    an H1  „Guide Min +“ D3
Endstop re 2    an H1  „Guide Min -“ GND

Ich habe mich nun doch noch entschieden die beiden Endstops einzeln abzufragen und nicht parallel zu schalten. Eventuell läßt sich da ja noch etwas realisieren.

Zwischenplatine Drahtführung Vorderseite Zwischenplatine Drahtführung RückseiteZwischenplatine Drahtführung mit TreiberWie man hier leicht sieht, ist das wirklich nichts Kompliziertes.

Die Schaltung liefere ich noch nach. Ich muss erst mal ein Tool finden, mit dem ich das ordentlich zeichnen kann.

Projekt: Drahtführung für Wickelautomat (Teil 6)

Der nächste Button hängt an Pin 8 des NANO. Er simuliert den Endanschlag an der linken und rechten Seite der Spulenbreite. Hier muss aus aktueller Sicht auch nicht zwischen links und rechts unterschieden werden, weil einfach nur ein sofortiger Stop und ein Wechsel der Bewegungsrichtung notwendig ist. Die beiden Endschalter sind also später parallel zu schalten. Zur Simulation reicht jetzt einer.

Der Button an Pin 9 setzt den Motor wie schon vorher in Gang. Der Button an Pin 8 leitet einen sofortigen Stop ein und ändert die Drehrichtung. Damit man das sieht muss die Bewegung aber mit dem „Bewegungs“-Button eingeleitet werden. Das Programm dazu:

// step and 2 buttons
// -*- mode: C++ -*-
//
// Ein Button um den Motor zu bewegen, zweiter Button um die Drehrichung zu ändern
//
// Thomas Sturm mit diversen Quellen

#include <AccelStepper.h>

// Define a stepper and the pins it will use
AccelStepper stepper(AccelStepper::DRIVER, 2, 5); // pin 2 = step, pin 5 = direction

// The button definition
const int buttonTurn = 9;     // the number of the buttonTurn pin, btn to Vcc, pin via resistor to ground
const int buttonEnd = 8;     // the number of the buttonEnd pin, btn to Vcc, pin via resistor to ground

// variables will change:
int btnTurnState = 0;         // variable for reading the pushbutton status
int btnEndState = 0;         // variable for reading the pushbutton status
int weg = 200;                // variable for Länge der Bewegung

void setup()
{
  // Anpassungen an Stepper
  stepper.setMaxSpeed(20);   // max steps per second
  stepper.setAcceleration(10);  // Beschleunigung in Steps per second per second

  // Die Pins an denen die Buttons hängen als Eingang definieren
  pinMode(buttonTurn, INPUT);     
  pinMode(buttonEnd, INPUT);     

}

void loop()
{
  // Auslesen der Button-Zustände
  btnTurnState = digitalRead(buttonTurn);
  btnEndState = digitalRead(buttonEnd);
 
  // beide Buttons auswerten

  if (btnTurnState == HIGH) {     
    stepper.move(weg);
  }

  if (btnEndState == HIGH) {
    weg = – weg;    // Drehrichtung ändern
    stepper.stop();  // sofortigen Stop einleiten, siehe AccelStepper Classes
  }

stepper.run();   // run immer ausführen um Bewegung zu vollenden, siehe AccelStepper Classes
}

Beim Ablauf des Programms gibt es jetzt aber schon ein Problem. Beim Drücken des Endstop-Buttons (Pin 8) wird zwar immer ein Stop ausgeführt. Leider scheint sich die Drehrichtung nicht immer zu ändern. Ich würde mal schätzen, dass entweder der Button prellt, oder aber die loop-Schleife während eines Buttondrucks mehrfach durchläuft. Das habe ich abgesichert. Dann stellte sich aber heraus, dass das natürlich auch für den „Bewegungs“-Button gilt, was vorher nicht auffiel. Ich habe eine neue Variable int lock (in die Variablen-Deklarationen aufnehmen !!) eingeführt und die loop folgendermaßen geändert:

void loop()
{
  // Auslesen der Button-Zustände
  btnTurnState = digitalRead(buttonTurn);
  btnEndState = digitalRead(buttonEnd);
 
  // beide Buttons auswerten

  if (btnTurnState == HIGH && stepper.distanceToGo() == 0) {     
    stepper.move(weg);
    lock–;
  }

  if (btnEndState == HIGH && lock < 1) {
    weg = – weg;    // Drehrichtung ändern
    lock = 5;        // mindestens 5 Bewegungstrigger muss gewartet werden, bis wieder ein Richtungtrigger möglich ist
    stepper.stop();  // sofortigen Stop einleiten, siehe AccelStepper Classes
  }

stepper.run();   // run immer ausführen um Bewegung zu vollenden, siehe AccelStepper Classes
}

Es steht ja schon im Kommentar: Bevor ein Stop und eine Richtungsänderung erneut möglich ist, müssen erst 5 Bewegungstrigger kommen. Nur dieser Anteil allein brachte aber nicht die notwendige Wirkung, weil eben auch der andere Button nicht kurz genug gedrückt werden kann. Also musste auch hier eine Sicherheit gegen Mehrfachbetätigung eingeführt werden. Über stepper.distanceToGo() == 0 lässt sich das einfach bewerkstelligen. Erst wenn eine Bewegung beendet ist, kann eine neue erfolgen.

Projekt: Drahtführung für Wickelautomat (Teil 5)

Ein relativ einfacher nächster Schritt:

An Pin 9 des NANO wird ein Button gegen Vcc angeschlossen.  Das ist wieder der 5V-Anschluss am NANO, den ich schon zum Treiber „FAULT“ verbunden hatte. Gleichzeitig liegt am NANO-Pin 9 über einen 10k-Widerstand GND.
Die ganzen Grundlagen zu AVR, – nichts anderes ist der Arduino -, kann man sich auf Mikrocontroller.net erarbeiten.
Das Ziel dieser Aktion ist, dass der Motor losläuft, wenn der Button gedrückt wird.  Bei mir lief das problemlos. Der Motor macht eine volle Umdrehung, da 200 relative Schritte vorgegeben sind. Drückt man nochmal, wird wieder in die gleiche Richtung gedreht.

Hier das entsprechende Programm:

// step and button
// -*- mode: C++ -*-
//
// Make a single stepper turn on button press
//
// Thomas Sturm mit diversen Quellen

#include <AccelStepper.h>

// Define a stepper and the pins it will use
AccelStepper stepper(AccelStepper::DRIVER, 2, 5); // pin 2 = step, pin 5 = direction

// The button definition
const int buttonPin = 9;     // the number of the pushbutton pin, btn to Vcc, pin via resistor to ground
// only for test purpose
const int ledPin =  13;      // the number of the LED pin onboard

// variables will change:
int buttonState = 0;         // variable for reading the pushbutton status

void setup()
{
  // Change these to suit your stepper if you want
  stepper.setMaxSpeed(10);   // max 10 steps per second
  stepper.setAcceleration(5);
  // initialize the LED pin as an output:
  pinMode(ledPin, OUTPUT);      
  // initialize the pushbutton pin as an input:
  pinMode(buttonPin, INPUT);     

}

void loop()
{
  // read the state of the pushbutton value:
  buttonState = digitalRead(buttonPin);

  // check if the pushbutton is pressed.
  // if it is, the buttonState is HIGH:
  if (buttonState == HIGH) {     
    // turn LED on:    
    digitalWrite(ledPin, HIGH);
    stepper.move(200);
  }
  else {
    // turn LED off:
    digitalWrite(ledPin, LOW);
  }
stepper.run();   // run immer ausführen um Bewegung zu vollenden, siehe AccelStepper Classes
}

 

Der jetzt eingebaute Button ist praktisch der Umdrehungssensor an der Drahtspule. Das Signal wird am Filawinder durch einen Magneten erzeugt, der an einem Hall-Sensor vorbeiläuft. Pro Umlauf der Spule muss sich später die Drahtführung um einen Drahtdurchmesser weiterbewegen.
Ein weiterer Button wird jetzt eingefügt. Er simuliert die Endpositionen, – die linke und rechte Seite der Spule.

Meine Testkonstruktion ist auch schon fertig. Sämtliche Halter, der Reiter und die Verbindungsmuffe sind gedruckte Teile. Die Files werde ich später zur Verfügung stellen.

Drahtführung Testaufbau Antrieb und Verbindung Drahtführung Testaufbau linker Halter Drahtführung Testaufbau Reiter Drahtführung Testaufbau Gesamtansicht